Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conservation and divergence of microRNAs in Populus.

Identifieur interne : 003C21 ( Main/Exploration ); précédent : 003C20; suivant : 003C22

Conservation and divergence of microRNAs in Populus.

Auteurs : Abdelali Barakat [États-Unis] ; Phillip K. Wall ; Scott Diloreto ; Claude W. Depamphilis ; John E. Carlson

Source :

RBID : pubmed:18166134

Descripteurs français

English descriptors

Abstract

BACKGROUND

MicroRNAs (miRNAs) are small RNAs (sRNA) approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing.

RESULTS

Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis.

CONCLUSION

Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to the taxa that produce them, as appears likely to be the case for those miRNAs that have only been observed in Populus. Non-conserved and conserved miRNAs seem to target genes with similar biological functions indicating that similar selection pressures are acting on both types of miRNAs. The expansion in the number of most conserved miRNAs in Populus relative to Arabidopsis, may be linked to the recent genome duplication in Populus, the slow evolution of the Populus genome, or to differences in the selection pressure on duplicated miRNAs in these species.


DOI: 10.1186/1471-2164-8-481
PubMed: 18166134
PubMed Central: PMC2270843


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conservation and divergence of microRNAs in Populus.</title>
<author>
<name sortKey="Barakat, Abdelali" sort="Barakat, Abdelali" uniqKey="Barakat A" first="Abdelali" last="Barakat">Abdelali Barakat</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Institute of Molecular Evolutionary Genetics, and The Huck Institutes of the Life Sciences, 403 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, USA. aub14@psu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Institute of Molecular Evolutionary Genetics, and The Huck Institutes of the Life Sciences, 403 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wall, Phillip K" sort="Wall, Phillip K" uniqKey="Wall P" first="Phillip K" last="Wall">Phillip K. Wall</name>
</author>
<author>
<name sortKey="Diloreto, Scott" sort="Diloreto, Scott" uniqKey="Diloreto S" first="Scott" last="Diloreto">Scott Diloreto</name>
</author>
<author>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
</author>
<author>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:18166134</idno>
<idno type="pmid">18166134</idno>
<idno type="doi">10.1186/1471-2164-8-481</idno>
<idno type="pmc">PMC2270843</idno>
<idno type="wicri:Area/Main/Corpus">003985</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003985</idno>
<idno type="wicri:Area/Main/Curation">003985</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003985</idno>
<idno type="wicri:Area/Main/Exploration">003985</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conservation and divergence of microRNAs in Populus.</title>
<author>
<name sortKey="Barakat, Abdelali" sort="Barakat, Abdelali" uniqKey="Barakat A" first="Abdelali" last="Barakat">Abdelali Barakat</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Institute of Molecular Evolutionary Genetics, and The Huck Institutes of the Life Sciences, 403 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, USA. aub14@psu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Institute of Molecular Evolutionary Genetics, and The Huck Institutes of the Life Sciences, 403 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wall, Phillip K" sort="Wall, Phillip K" uniqKey="Wall P" first="Phillip K" last="Wall">Phillip K. Wall</name>
</author>
<author>
<name sortKey="Diloreto, Scott" sort="Diloreto, Scott" uniqKey="Diloreto S" first="Scott" last="Diloreto">Scott Diloreto</name>
</author>
<author>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
</author>
<author>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Speciation (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Nucleic Acid Conformation (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (genetics)</term>
<term>Sequence Analysis, RNA (MeSH)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
<term>Tissue Distribution (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ARN (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Conformation d'acide nucléique (MeSH)</term>
<term>Distribution tissulaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Populus (génétique)</term>
<term>Similitude de séquences d'acides nucléiques (MeSH)</term>
<term>Spéciation génétique (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Oryza</term>
<term>Populus</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Genes, Plant</term>
<term>Genetic Speciation</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Nucleic Acid Conformation</term>
<term>Sequence Analysis, RNA</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Tissue Distribution</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ARN</term>
<term>Conformation d'acide nucléique</term>
<term>Distribution tissulaire</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Spéciation génétique</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>MicroRNAs (miRNAs) are small RNAs (sRNA) approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to the taxa that produce them, as appears likely to be the case for those miRNAs that have only been observed in Populus. Non-conserved and conserved miRNAs seem to target genes with similar biological functions indicating that similar selection pressures are acting on both types of miRNAs. The expansion in the number of most conserved miRNAs in Populus relative to Arabidopsis, may be linked to the recent genome duplication in Populus, the slow evolution of the Populus genome, or to differences in the selection pressure on duplicated miRNAs in these species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18166134</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2007</Year>
<Month>Dec</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Conservation and divergence of microRNAs in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>481</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-8-481</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">MicroRNAs (miRNAs) are small RNAs (sRNA) approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to the taxa that produce them, as appears likely to be the case for those miRNAs that have only been observed in Populus. Non-conserved and conserved miRNAs seem to target genes with similar biological functions indicating that similar selection pressures are acting on both types of miRNAs. The expansion in the number of most conserved miRNAs in Populus relative to Arabidopsis, may be linked to the recent genome duplication in Populus, the slow evolution of the Populus genome, or to differences in the selection pressure on duplicated miRNAs in these species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barakat</LastName>
<ForeName>Abdelali</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Institute of Molecular Evolutionary Genetics, and The Huck Institutes of the Life Sciences, 403 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, USA. aub14@psu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wall</LastName>
<ForeName>Phillip K</ForeName>
<Initials>PK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Diloreto</LastName>
<ForeName>Scott</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Depamphilis</LastName>
<ForeName>Claude W</ForeName>
<Initials>CW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carlson</LastName>
<ForeName>John E</ForeName>
<Initials>JE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>12</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="Y">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049810" MajorTopicYN="Y">Genetic Speciation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014018" MajorTopicYN="N">Tissue Distribution</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>12</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18166134</ArticleId>
<ArticleId IdType="pii">1471-2164-8-481</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-8-481</ArticleId>
<ArticleId IdType="pmc">PMC2270843</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2001-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1997 Dec;13(12):497-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9433140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Jan;15(1):78-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3691-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15738428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(4):R34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1397-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jul;12(7):1093-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Oct 26;294(5543):858-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11679671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jul 1;16(13):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Sep;130(1):6-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 20;297(5589):2053-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Mar;9(3):277-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12592000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jul 18;301(5631):336-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 18;425(6955):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12931144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Oct;107(6):1094-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D101-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Apr;7(2):120-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1688-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):485-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15057819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1464-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jun 18;14(6):787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jul 23;15(2):173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 2;309(5740):1567-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Oct;22(10):1948-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 15;437(7057):376-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16056220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2005 Sep-Oct;87(9-10):905-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Biol Chem. 2005 Oct;29(5):360-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 20;311(5759):392-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16368896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:19-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(4):212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jul;47(1):25-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2006;6:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16934154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 15;20(24):3407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D888-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(2):e219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17299599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):32-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):991-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
<name sortKey="Diloreto, Scott" sort="Diloreto, Scott" uniqKey="Diloreto S" first="Scott" last="Diloreto">Scott Diloreto</name>
<name sortKey="Wall, Phillip K" sort="Wall, Phillip K" uniqKey="Wall P" first="Phillip K" last="Wall">Phillip K. Wall</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Barakat, Abdelali" sort="Barakat, Abdelali" uniqKey="Barakat A" first="Abdelali" last="Barakat">Abdelali Barakat</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C21 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003C21 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18166134
   |texte=   Conservation and divergence of microRNAs in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18166134" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020